Methods in Combinatorics

- Finite, Countable, Discrete.
- Enumerating objects which satisfy a condition.
- In short: Counting Stuff
\rightarrow Balls \& Urns

12-fold Way

Balls	Urns	unrestricted	≤ 1	≥ 1
labeled	labeled	$u^{\text {b }}$	(u) ${ }_{\text {b }}$	$u!S(b, u)$
unlabeled	labeled	$\binom{$ u }{ b }	$\binom{$ u }{ b }	$\left(\binom{\right.$ u }{$\left.\mathrm{b}-\mathrm{u}}\right)$
labeled	unlabeled	$\sum_{i=1}^{u} S(b, i)$	$[\mathrm{b} \leq \mathrm{u}]$	$\mathrm{S}(\mathrm{b}, \mathrm{u})$
unlabeled	unlabeled	$\sum_{i=1}^{u} p_{i}(b)$	$[\mathrm{b} \leq \mathrm{u}]$	$p_{u}(\mathrm{~b})$

Let u represent the number of available urns and b the number of balls.
≤ 1 : No more than one ball per urn
≥ 1 : At least one ball per urn

12-fold Way

- Labeled balls, labeled urns, unrestricted:
- Total of u^{b} possibilities.
- Labeled balls, labeled urns, ≤ 1 :
- Total of $(u)_{b}=\mathrm{P}(u, b)=\frac{u!}{(u-b)!}$ possibilities.
- Unlabeled balls, labeled urns, ≤ 1 :
- Total of $\binom{u}{b}=\mathrm{C}(u, b)=\frac{u!}{b!(u-b)!}$ possibilities.
- Pascal's Triangle
- Binomial Coefficients

12-fold Way

- Unlabeled balls, labeled urns, unrestricted:
- Notation: $\left(\binom{u}{b}\right)=\binom{u+b-1}{b}=\frac{(u+b-1)!}{b!(u-1)!}$
- Stars-and-Bars Method: Imagine the u urns as spaces between the $u-1$ bars.

Example: (4 balls assigned to 3 urns)

- Among $b+u-1$ symbols we choose b to be stars...

12-fold Way

- Unlabeled balls, labeled urns, ≥ 1
- Put one ball in each urn. Now there are $b-u$ balls that can be distributed without restriction and so this is the previous case.
- Total:

$$
\left(\binom{u}{b-u}\right)=\binom{u-1}{b-1}
$$

12-fold Way [Stirling Numbers]

- Labeled balls, unlabeled urns, ≥ 1
- Stirling numbers of the second kind. $\quad \mathbf{S}(b, u)=S_{b}^{(u)}=\left\{\begin{array}{l}b \\ u\end{array}\right\}$
$-\quad \rightarrow \quad \mathrm{S}(\mathrm{n}, \mathrm{k})$ is defined to be the number of ways to partition n objects into k non-empty, unordered sets.

Example: $\mathrm{S}(4,2)=7$
(since $\{1,2,3,4\}$ can be partitioned into 2 sets in 7 ways as follows:)
$\{1\} \cup\{2,3,4\},\{2\} \cup\{1,3,4\},\{3\} \cup\{1,2,4\},\{4\} \cup\{1,2,3\}$,
$\{1,2\} \cup\{3,4\},\{1,3\} \cup\{2,4\},\{1,4\} \cup\{2,3\}$

- Bell numbers are the total partitions for b (i.e. u goes from 0 to b)
- How to calculate? No explicit formula. Recurrence relation:

$$
S(n, k)=k S(n-1, k)+S(n-1, k-1)
$$

12-fold Way [Stirling Numbers]

- Labeled balls, unlabeled urns, ≥ 1
- Stirling numbers of the second kind.

$$
\mathrm{S}(n, k)=S_{n}^{(k)}=\left\{\begin{array}{l}
n \\
k
\end{array}\right\}
$$

- How to calculate? No explicit formula. Recurrence relation:

$$
S(n, k)=k S(n-1, k)+S(n-1, k-1) \text { where } S(n, n)=S(n, 1)=1
$$

Catalan Numbers

- Many applications. $\quad \mathrm{C}_{n}=\frac{1}{n+1}\binom{2 \mathrm{n}}{n}$
- \# sequences with correctly matched parenthesis for n pairs:

$$
\begin{array}{llll}
((()))) & (()(()) \quad()()() & (())() \quad(()())
\end{array}
$$

- \# monotonic paths not crossing the diagonal of an nxn grid:

Catalan Numbers

- Many applications.

$$
\mathrm{C}_{n}=\frac{1}{n+1}\binom{2 \mathrm{n}}{n}=\binom{2 \mathrm{n}}{n}-\binom{2 \mathrm{n}}{n+1}
$$

Inclusion Exclusion Principle

- ~ Common Sense

Compensate for over counting when evaluating the cardinality of the union of finite sets.

$$
\begin{aligned}
\left|\bigcup_{i=1}^{n} A_{i}\right|= & \sum_{i=1}^{n}\left|A_{i}\right|- \\
& \quad \sum_{i, j: 1 \leq i<j \leq n}\left|A_{i} \cap A_{j}\right| \\
& +\sum_{i, j, k: 1 \leq i<j<k \leq n}\left|A_{i} \cap A_{j} \cap A_{k}\right|-\cdots+(-1)^{n-1}\left|A_{1} \cap \cdots \cap A_{n}\right|
\end{aligned}
$$

Burnside's Lemma

- Colourings which are invarient under transformation.
- E.g. colouring the faces of a cube with 3 colours:
- one identity element
- six 90-degree face rotations
- three 180-degree face rotations
- eight 120-degree vertex rotations
- six 180-degree edge rotations

- How many faces remain unchanged after each transformation?

Total \# of possibilites: $\quad \frac{1}{24}\left(3^{6}+6 \times 3^{3}+3 \times 3^{4}+8 \times 3^{2}+6 \times 3^{3}\right)$

