Methods in Combinatorics

- Finite, Countable, Discrete.
 - Enumerating objects which satisfy a condition.
- In short: Counting Stuff

→ Balls & Urns

Balls	Urns	unrestricted	<u>≤</u> 1	<u>></u> 1
labeled	labeled	u ^b	$(\mathfrak{u})_{\mathfrak{b}}$	$\mathfrak{u}!S(\mathfrak{b},\mathfrak{u})$
unlabeled	labeled	$\left(\begin{pmatrix} u \\ b \end{pmatrix} \right)$	$\binom{u}{b}$	$\left(\begin{pmatrix} u \\ b-u \end{pmatrix} \right)$
labeled	unlabeled	$\sum_{i=1}^{u} S(b,i)$	$[\mathfrak{b} \leq \mathfrak{u}]$	S(b, u)
unlabeled	unlabeled	$\sum_{i=1}^{u} p_i(b)$	$[\mathfrak{b} \leq \mathfrak{u}]$	$p_u(b)$

Let *u* represent the number of available urns and *b* the number of balls.

- ≤ 1 : No more than one ball per urn
- \geq 1 : At least one ball per urn

- Labeled balls, labeled urns, unrestricted:
 - Total of u^b possibilities.
- Labeled balls, labeled urns, ≤ 1 :
 - Total of $(u)_b = P(u, b) = \frac{u!}{(u-b)!}$ possibilities.
- Unlabeled balls, labeled urns, ≤ 1:
 Total of ^(u)_b = C(u,b) = ^{u!}/_{b!(u-b)!} possibilities.
 Pascal's Triangle

 - **Binomial Coefficients**

• Unlabeled balls, labeled urns, unrestricted:

• Notation:
$$\begin{pmatrix} u \\ b \end{pmatrix} = \begin{pmatrix} u+b-1 \\ b \end{pmatrix} = \frac{(u+b-1)!}{b!(u-1)!}$$

• Stars-and-Bars Method:

Imagine the *u* urns as spaces between the *u*-1 bars.

Example: (4 balls assigned to 3 urns)

$\star | \star \star \star |$

Among b+u-1 symbols we choose b to be stars...

- Unlabeled balls, labeled urns, ≥ 1
 - Put one ball in each urn. Now there are b u balls that can be distributed without restriction and so this is the previous case.
 - Total:

$$\left(\begin{pmatrix} u \\ b-u \end{pmatrix} \right) = \begin{pmatrix} u-1 \\ b-1 \end{pmatrix}$$

12-fold Way [Stirling Numbers]

Labeled balls, unlabeled urns, ≥ 1

• Stirling numbers of the second kind. $S(b, u) = S_b^{(u)} = \begin{vmatrix} b \\ u \end{vmatrix}$

 \rightarrow S(n, k) is defined to be the number of ways to partition n objects into k non-empty, unordered sets.

Example: S(4, 2) = 7

(since {1,2,3,4} can be partitioned into 2 sets in 7 ways as follows:)

 $\{1\} \cup \{2, 3, 4\}, \{2\} \cup \{1, 3, 4\}, \{3\} \cup \{1, 2, 4\}, \{4\} \cup \{1, 2, 3\},$

 $\{1, 2\} \cup \{3, 4\}, \{1, 3\} \cup \{2, 4\}, \{1, 4\} \cup \{2, 3\}$

- Bell numbers are the total partitions for b (i.e. u goes from 0 to b)
- How to calculate? No explicit formula. Recurrence relation:
 S(n, k) = k S(n 1, k) + S(n 1, k 1)

12-fold Way [Stirling Numbers]

- Labeled balls, unlabeled urns, ≥ 1
 - Stirling numbers of the second kind. $S(n,k) = S_n^{(k)} = \begin{cases} n \\ k \end{cases}$
- How to calculate? No explicit formula. Recurrence relation: S(n, k) = k S(n - 1, k) + S(n - 1, k - 1) where S(n,n) = S(n,1) = 1

Catalan Numbers

• Many applications. $C_n = \frac{1}{n+1} {2n \choose n}$

- # sequences with correctly matched parenthesis for n pairs:
 ((())) ()(()) ()()() (())()
- # monotonic paths not crossing the diagonal of an nxn grid:

Catalan Numbers

Many applications.

$$\mathbf{C}_{n} = \frac{1}{n+1} \binom{2\mathbf{n}}{n} = \binom{2\mathbf{n}}{n} - \binom{2\mathbf{n}}{n+1}$$

Inclusion Exclusion Principle

~ Common Sense

Compensate for over counting when evaluating the cardinality of the union of finite sets.

$$\left| \bigcup_{i=1}^{n} A_{i} \right| = \sum_{i=1}^{n} |A_{i}| - \sum_{i,j: 1 \le i < j \le n} |A_{i} \cap A_{j}| + \sum_{i,j,k: 1 \le i < j < k \le n} |A_{i} \cap A_{j} \cap A_{k}| - \dots + (-1)^{n-1} |A_{1} \cap \dots \cap A_{n}|.$$

Burnside's Lemma

- Colourings which are invarient under transformation.
 - E.g. colouring the faces of a cube with 3 colours:
 - one identity element
 - six 90-degree face rotations
 - three 180-degree face rotations
 - eight 120-degree vertex rotations
 - six 180-degree edge rotations

How many faces remain unchanged after each transformation?

Total # of possibilites:

$$\frac{1}{24} \left(3^6 + 6 \times 3^3 + 3 \times 3^4 + 8 \times 3^2 + 6 \times 3^3 \right)$$